Time Value In-Class Exercise (Key)

1. You deposit $\$ 1,000$ in a mutual fund (a one-time deposit) that earns 8% compounded annually.
a. How much will you have in your account at the end of 10 years?

FV Factor (Table 1) for 8% for 10 years $=2.1589$ $\$ 1,000 \times 2.1589=\$ 2,158.90$ Your money more than doubled in 10 years!
b. At the end of 40 years?

FV Factor (Table 1) for 8% for 40 years $=21.7245$
$\$ 1,000 \times 21.7245=\$ 21,724.50$ Your $\$ 1,000$ grew to almost $\$ 22,000!!$
c. What if you had invested the $\$ 1,000$ in a savings account that earned 2% annually - how much would you have in your account after 40 years?

FV Factor (Table 1) for 2% for 40 years $=2.2080$
$\$ 1,000 \times 2.2080=\$ 2,208$ Your $\$ 1,000$ only grew to $\$ 2,200$. Compare this result to part c. where it grew to \$22,000!!
2. You just bought a plot of land for $\$ 4,000 /$ acre in hopes that it will increase in value 7% each year.
a. How much will the land be worth in 10 years assuming it increases in value by 7% each year?

FV Factor (Table 1) for 7\% for 10 years $=1.9672$
$\$ 4,000 \times 1.9672=\$ 7,868.80$
b. How much will it be worth after 40 years?

FV Factor (Table 1) for 7% for 40 years $=14.9745$
\$4,000 x 14.9745= \$59,898
3a. You want to have $\$ 50,000$ at the end of 10 years in order to make a down payment on your business. How much do you need to invest today (today only), earning 8% per year, to have $\$ 50,000$ in your account after 10 years?

This is a Present Value of a Lump Sum problem
PV Factor (Table 2) for 8% for 10 years $=0.4632$
$\$ 50,000 \times 0.4632=\$ 23,160$
If you invest $\$ 23,160$ today, it will grow to $\$ 50,000$ at the end of 10 years if you earn an annual return of 8%.

3b. Similar to 3a, you want to have $\$ 50,000$ at the end of 10 years. You can invest $\$ 4,000 /$ year for each of the next 10 years. Your investment will earn a return of 8% per year. Will you be able to reach your goal?

This is a Future Value of an Annuity problem
FVA Factor (Table 6) for 8% for 10 years = 15.6455
$\$ 4,000 \times 15.6455=\$ 62,582$

Yes, if you invest $\$ 4,000 / y r$ for the next 10 years, it will grow to $\$ 62,582$. This is greater than the $\$ 50,000$ you wanted to have.
4. You want to contribute $\$ 5,000 /$ year to an IRA (Individual Retirement Account) - investing in assets that earn about 8 percent annually. How much will you have in the IRA after 20 years? 40 years?

This is a Future Value of an Annuity problem
FVA Factor (Table 6) for 8% for 20 years $=49.4229$
$\$ 5,000 \times 49.4229=\$ 247,115$ (but you only invested $\$ 100,000$ over this time!)
FVA Factor (Table 6) for 8% for 40 years $=279.7810$
$\$ 5,000 \times 279.7810=\$ 1,398,905$ (but you only invested $\$ 200,000$ over this time!)
5. The average America family has annual living expenses (food, rent, utilities, etc.) of $\$ 50,000$ per year. Let's assume that the annual inflation rate is 3% per year. How much will it cost an average American family to have the same level of living ($\$ 50,000 /$ year) 50 years from now? (50 years is approximately when you will be retiring!)

This is a Future Value of a Lump Sum question
FV Factor (Table 1) for 3% for 50 years $=4.3839$
$\$ 50,000 \times 4.3839=\$ 219,195$ (it will cost over 4 times as much for the same level of living - just due to inflation!!)

