Time Value of Money- Note Organizer

\$10 Today vs. \$10 Next Year?

- Most people would rather have \$10 today rather than waiting to be paid \$10 next year
- 3 main reasons:

0

- You may not get paid in the future!
- Inflation
 - As prices increase, that \$10 will buy less in the future

0 _____

- You can do something with that \$10 today
 - Save, pay down loans, invest, spend, donate, etc.

Time Value of Money

- Having money in hand today is more valuable than waiting to maybe receive money in the future
 - RIO (Risk, Inflation, Opportunities)
- This is called the "______"

Compound Interest

- Powerful financial tool!
- _____:
 - "Earning interest on top of interest"
 - The interest you earn in period 1 will earn interest in period 2...
- Example: You invest \$1,000 today in an account that earns 10% annual return
 - o How much will you earn over the next 3 years?
 - Year 1: \$1,000 x 10% = \$100 of interest
 - Year 2: (\$1,000 + \$100) x 10% = \$110 of interest
 - Notice you earned \$10 more dollars of interest in Year 2
 - The \$100 of interest in Year 1 is treated as principal for the Year 2 calculation
 - Year 3: (\$1,000 + \$100 + \$110) x 10% = \$121 of interest
 - Compound Interest
 - Year 1 = \$100 earned
 - Year 2 = \$110 earned
 - Year 3 = \$121 earned
 - Total interest earned = \$331
 - If you earned "simple interest" you would only earn \$300 of interest
 - \$1,000 x 10% x 3 years = \$300

Terms

•	= a one-time investment
0	
• A	nnuity = stream of regular payments
0	Ex. Car loan payments – they are the same amount every month for a stated number of years
• _	= what you will have in your account in the future
• P	resent Value = what something is worth today
pes o	f Time Value Problems
•	Determines how much money an investment will be worth in the future if you invest money today
• P	resent Value of a Lump Sum
0	Determines how much you would rather have today instead of waiting to be paid (maybe) in the future
0	Also, it determines how much you need to invest today to reach a specific future value
•	Determines how much you will have in your account in the future if you invest regularly over time
0	Example: You invest \$500/year into a retirement account that earns 8% return. How much will you
	have in your account after 50 years?
ving	Time Value Problems
4	methods:
0	Time Value of Money tables
0	
0	Financial calculators
0	Time Value of Money formulas
	**We will focus on the tables and spreadsheets
ing th	ne Time Value Tables
S	ame as the annual loan payment table
L	ook up the column with the
F	ollow the column down to the row with the number of years
· N	Multiply that factor by the of the investment
ture \	Value of a Lump Sum
· U	se Table 1
• F	xample: You invest \$1,000 today in an account that earns 5%. How much will you have in your accoun

- after 5 years?
 - o Factor for 5% for 5 years = 1.2763
 - o FV = 1.2763 x \$1,000 = <u>\$1,276.30</u>

- Your \$1,000 grew to almost \$1,300 in 5 years!!
- Assume that you leave your money in the account for 40 years you do NOT add any more money. How much will you have in your account after 5 years at a 5% return?
 - Factor for 5% for 40 years = 7.0400
 - \circ FV = 7.0400 x \$1,000 = \$7,040.00
 - Your initial investment of \$1,000 grew to more than \$7,000!!

Present Value of a Lump Sum

- Use Table 2
- PV is the " " of FV
- Example: You want to have \$10,000 available after 5 years for a down payment on some land. How much do you need to invest today to reach this goal at a 6% return?
 - \circ Factor for 6% for 5 years = 0.7473
 - \circ PV = 0.7473 x \$10,000 = \$7,473
- From this example:
 - If you invest \$7,473 today
 - It earns 6% each year (compound interest)
 - It will grow to \$10,000 in 5 years

Future Value of an Annuity

- Use Table 6
- Example: You invest \$1,000/yr for 30 years. It earns 7% return. How much will you have after 30 years?
 - You might think somewhere around \$30,000
 - $$1,000/yr \times 30 yr = $30,000$
 - o Factor for 7% for 30 years = 101.0730
 - o FV = \$101.0730 x \$1,000/yr = \$101,073
 - That's a lot more than the \$30,000 you invested!!

Using a Time Value Spreadsheet

- - You can change key factors to see the impact
- For Future Value calculations
 - Click on the " ______" tab
 - You can change any number with a blue font
 - It will automatically recalculate the FV
- Future Value Spreadsheet
- Example: You want to invest \$300/yr at 6%. What will you have after 5 years?
 - Number of Years
 Cell C3 Enter 5

- Annual Rate (%)
 Cell C7 Enter 6
 Cell C9 Enter 300
 Present Value
 Cell C10Enter 0
- FV = \$1,792.60
- What is your FV if you earn 10% instead of 6%?
 - Simply change Cell C7 (Annual Rate) to 10
- Present Value Spreadsheet
 - Click on the "PV Calculator" tab
 - Use the same as the FV calculator
 - Example: You want to have a future value of \$40,000 after 10 years. How much do you need to invest today earning 7%?
 - Years = 10
 - Annual Rate = 7%
 - Annuity = 0
 - FV (Lump Sum) = 40,000
 - PV = \$20,333.97

Keep in Mind

- Lump sum = only investing 1 time
- = several constant investments
- If you know the FV,
- If you know the PV, solve for the FV
- If it helps, draw a timeline
 - This can help you figure out what to solve for!