Time Value of Money- Note Organizer

\$10 Today vs. \$10 Next Year?

- Most people would rather have $\$ 10$ today rather than waiting to be paid $\$ 10$ next year
- 3 main reasons:
\circ
- You may not get paid in the future!
- Inflation
- As prices increase, that $\$ 10$ will buy less in the future

。

- You can do something with that $\$ 10$ today
- Save, pay down loans, invest, spend, donate, etc.

Time Value of Money

- Having money in hand today is more valuable than waiting to maybe receive money in the future - RIO (Risk, Inflation, Opportunities)
- This is called the " \qquad $"$

Compound Interest

- Powerful financial tool!
\qquad
- "Earning interest on top of interest"
- The interest you earn in period 1 will earn interest in period 2...
- Example: You invest $\$ 1,000$ today in an account that earns 10% annual return
- How much will you earn over the next 3 years?
- Year 1: $\$ 1,000 \times 10 \%=\$ 100$ of interest
- Year 2: $(\$ 1,000+\$ 100) \times 10 \%=\$ 110$ of interest
- Notice you earned \$10 more dollars of interest in Year 2
- The $\$ 100$ of interest in Year 1 is treated as principal for the Year 2 calculation
- Year 3: (\$1,000 + \$100 + \$110) x 10\% = \$121 of interest
- Compound Interest
- Year 1 = \$100 earned
- Year 2 = \$110 earned
- Year 3 = \$121 earned
- Total interest earned = \$331
- If you earned "simple interest" you would only earn $\$ 300$ of interest
- $\$ 1,000 \times 10 \% \times 3$ years = \$300

Terms
= a one-time investment

- Ex. You invest $\$ 500$ today and invest nothing else after that
- Annuity = stream of regular payments
- Ex. Car loan payments - they are the same amount every month for a stated number of years
- \qquad = what you will have in your account in the future
- \quad Present Value $=$ what something is worth today

Types of Time Value Problems

- Determines how much money an investment will be worth in the future if you invest money today
- Present Value of a Lump Sum
- Determines how much you would rather have today instead of waiting to be paid (maybe) in the future
- Also, it determines how much you need to invest today to reach a specific future value
- Determines how much you will have in your account in the future if you invest regularly over time
- Example: You invest $\$ 500 /$ year into a retirement account that earns 8% return. How much will you have in your account after 50 years?

Solving Time Value Problems

- 4 methods:
- Time Value of Money tables

。

- Financial calculators
- Time Value of Money formulas
**We will focus on the tables and spreadsheets

Using the Time Value Tables

- Same as the annual loan payment table
- Look up the column with the \qquad
- Follow the column down to the row with the number of years
- Multiply that factor by the \qquad of the investment

Future Value of a Lump Sum

- Use Table 1
- Example: You invest $\$ 1,000$ today in an account that earns 5%. How much will you have in your account after 5 years?
- Factor for 5% for 5 years $=1.2763$
- $\mathrm{FV}=1.2763 \times \$ 1,000=\$ 1,276.30$
- Your \$1,000 grew to almost \$1,300 in 5 years!!
- Assume that you leave your money in the account for 40 years - you do NOT add any more money. How much will you have in your account after 5 years at a 5% return?
- Factor for 5% for 40 years $=7.0400$
- $\mathrm{FV}=7.0400 \times \$ 1,000=\$ 7,040.00$
- Your initial investment of $\$ 1,000$ grew to more than $\$ 7,000$!!

Present Value of a Lump Sum

- Use Table 2
- PV is the "___ of FV
- Example: You want to have $\$ 10,000$ available after 5 years for a down payment on some land. How much do you need to invest today to reach this goal at a 6% return?
- Factor for 6% for 5 years $=0.7473$
- PV = $0.7473 \times \$ 10,000=\$ 7,473$
- From this example:
- If you invest \$7,473 today
- It earns 6\% each year (compound interest)
- It will grow to $\$ 10,000$ in 5 years

Future Value of an Annuity

- Use Table 6
- Example: You invest $\$ 1,000 / y r$ for 30 years. It earns 7% return. How much will you have after 30 years?
- You might think somewhere around \$30,000
- $\$ 1,000 / \mathrm{yr} \times 30 \mathrm{yr}=\$ 30,000$
- Factor for 7% for 30 years $=101.0730$
- $\mathrm{FV}=\$ 101.0730 \times \$ 1,000 / \mathrm{yr}=\$ 101,073$
- That's a lot more than the $\$ 30,000$ you invested!!

Using a Time Value Spreadsheet
-

- You can change key factors to see the impact
- For Future Value calculations
- Click on the " \qquad " tab
- You can change any number with a blue font
- It will automatically recalculate the FV
- Future Value Spreadsheet
- Example: You want to invest $\$ 300 / y r$ at 6%. What will you have after 5 years?
- Number of Years
Cell C3 Enter 5
- Annual Rate (\%)

Cell C7 Enter 6

- Annuity

Cell C9 Enter 300

- Present Value
- $\mathrm{FV}=\$ 1,792.60$
- What is your FV if you earn 10% instead of 6% ?
- Simply change Cell C7 (Annual Rate) to 10
- Present Value Spreadsheet
- Click on the "PV Calculator" tab
- Use the same as the FV calculator
- Example: You want to have a future value of $\$ 40,000$ after 10 years. How much do you need to invest today earning 7\%?
- Years = 10
- Annual Rate $=7 \%$
- Annuity $=0$
- FV (Lump Sum) $=40,000$
- $\quad \mathrm{PV}=\$ 20,333.97$

Keep in Mind

- Lump sum = only investing 1 time
- \quad = several constant investments
- If you know the FV,
- If you know the PV, solve for the FV
- If it helps, draw a timeline
- This can help you figure out what to solve for!

