

\$10 Today vs. \$10 Next Year?

Most people would rather have $\$ 10$ today rather than waiting to be paid
\$10 next year

- 3 main reasons:
- Risk
- You may not get paid in the future!
- Inflation
- As prices increase, that $\$ 10$ will buy less in the future

Opportunities

- You can do something with that $\$ 10$ today Save, pay down loans, invest, spend, donate, etc. NOWLEDGE CENTER

Compound Interest

- Powerful financial tool!
- Compounding means:
"Earning interest on top of interest" period 2..
- Example: You invest $\$ 1,000$ today in an account that earns 10\% annual return
- How much will you earn over the next 3 years?

Terms

- Lump Sum = a one-time investment

Ex. You invest $\$ 500$ today and invest nothing else after that

- Annuity = stream of regular payments

Ex. Car loan payments - they are the same amount every month for a stated number of years

Types of Time Value Problems

- Future Value = what you will have in your account in the future
- Present Value $=$ what something is worth today

Future Value of a Lump Sum

- Determines how much money an investment will be worth in the future if you invest money today
- Present Value of a Lump Sum
- Determines how much you would rather have today instead of waiting to be paid (maybe) in the future reach a specific future value

Types of Time Value Problems

- Future Value of an Annuity

Determines how much you will have in your account in the future if you invest regularly over time

Example: You invest $\$ 500 /$ year into a retirement account that earns 8% return. How much will you have account that earns 8% return. How

Solving Time Value Problems

- 4 methods:
- Time Value of Money tables
- Excel spreadsheets
- Financial calculators
- Time Value of Money formulas
- We will focus on the tables and spreadsheets

Future Value of a Lump Sum

- Use Table 1
- Example: You invest $\$ 1,000$ today in an account that earns 5%. How much will you have in your account after 5 years?
- Factor for 5% for 5 years $=1.2763$
- $\mathrm{FV}=1.2763 \times \$ 1,000=\$ 1,276.30$
- Your \$1,000 grew to almost \$1,300 in 5 years!!

Future Value of a Lump Sum

- Assume that you leave your money in the account for 40 years - you do Not add any more money. How much will you have in your account after 5 years at a 5% return?
- Factor for 5% for 40 years $=7.0400$
- $\mathrm{FV}=7.0400 \times \$ 1,000=\$ 7.040 .00$

Present Value of a Lump Sum

- Use Table 2
- PV is the "opposite" of FV
- Example: You want to have \$10,000 available after 5 years for a down payment on some land. How much do you need to invest today to reach this goal at a 6\% return?
- Factor for 6% for 5 years $=0.7473$

Your initial investment of $\$ 1,000$ grew to more than \$7,000!!

Future Value of an Annuity

- Use Table 6
- Example: You invest $\$ 1,000 /$ yr for 30 years. It earns 7% return. How much will you have after 30 years? You misht thin sou he a years? - $\$ 1,000 / \mathrm{yr} \times 30 \mathrm{yr}=\$ 30,000$
- Factor for 7% for 30 years $=101.0730$
- $\mathrm{FV}=\$ 101.0730 \times \$ 1,000 / \mathrm{yr}=\$ 101,073$
- That's a lot more than the $\$ 30,000$ you invested!!

